

LOCTITE[®] 480™

January 2017

PRODUCT DESCRIPTION

LOCTITE[®] 480[™] provides the following product characteristics:

Technology	Cyanoacrylate			
Chemical Type	Ethyl cyanoacrylate			
Appearance (uncured)	Black liquid ^{LMS}			
Components	One part - requires no mixing			
Viscosity	Low			
Cure	Humidity			
Application	Bonding			
Key Substrates	Metals , Plastics and Rubbers			

LOCTITE[®] 480[™] is a rubber toughened adhesive with increased flexibility and peel strength along with enhanced resistance to shock.

TYPICAL PROPERTIES OF UNCURED MATERIAL

Specific Gravity @ 25 °C 1.05

Flash Point - See SDS

Viscosity, Cone & Plate, mPa·s (cP):

Temperature: 25 °C, Shear Rate: 1,000 s⁻¹ 100 to 200^{LMS}

Viscosity, Brookfield - LVF, 25 °C, mPa·s (cP):

Spindle 1, speed 6 rpm 100 to 200

TYPICAL CURING PERFORMANCE

Under normal conditions, the atmospheric moisture initiates the curing process. Although full functional strength is developed in a relatively short time, curing continues for at least 24 hours before full chemical/solvent resistance is developed.

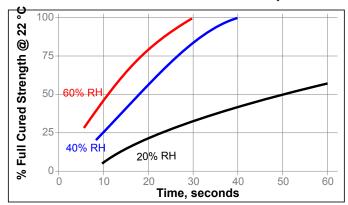
Cure Speed vs. Substrate

The rate of cure will depend on the substrate used. The table below shows the fixture time achieved on different materials at 22 $^{\circ}$ C / 50 % relative humidity. This is defined as the time to develop a shear strength of 0.1 N/mm² .

Fixture Time. seconds:

mare rime, cocorido.	
Steel (degreased)	60 to 120
Aluminum	10 to 30
Zinc dichromate	50 to 150
Neoprene	<20
Rubber, nitrile	<20
ABS	20 to 50
PVC	50 to 100
Polycarbonate	30 to 90
Phenolic	20 to 60

Cure Speed vs. Bond Gap


The rate of cure will depend on the bondline gap. Thin bond lines result in high cure speeds, increasing the bond gap will decrease the rate of cure.

Cure Speed vs. Activator

Where cure speed is unacceptably long due to large gaps, applying activator to the surface will improve cure speed. However, this can reduce ultimate strength of the bond and therefore testing is recommended to confirm effect.

Cure Speed vs. Humidity

The rate of cure will depend on the ambient relative humidity. The following graph shows the tensile strength developed with time on Buna N rubber at different levels of humidity.

TYPICAL PROPERTIES OF CURED MATERIAL

Cured for 24 hours @ 22 °C

Physical Properties:

Coefficient of Thermal Expansion, 80×10⁻⁶ ISO 11359-2,, K⁻¹ Coefficient of Thermal Conductivity ISO 8302, 0.1 W/(m·K)

Glass Transition Temperature, ISO 11359-2, 150 °C

Electrical Properties:

Volume Resistivity, IEC 60093, $\Omega \cdot \text{cm}$ 10×10^{15} Surface Resistivity, IEC 60093, Ω 10×10^{15} Dielectric Breakdown Strength, 25 IEC 60243-1, kV/mm Dielectric Constant / Dissipation Factor, IEC 60250: 0.1 kHz 2.65 / <0.02 1 kHz 2.75 / <0.02 10 kHz 2.75 / <0.02

TYPICAL PERFORMANCE OF CURED MATERIAL Adhesive Properties

Cured for 30 seconds @ 22 °C Tensile Strength, ISO 6922:

Buna-N N/mm² ≥1.8^{LMS} (psi) (≥260)

Cured for 24 hours @ 22 °C

Lap Shear Strength, ISO 4587: Steel (grit blasted) N/mm² 22 to 30 (3,200 to 4,400) (psi) Aluminum (etched) N/mm² 14 to 22 (2,000 to 3,200) (psi) Zinc dichromate N/mm² 8 to 15 (1,200 to 2,200) (psi) ABS N/mm² 6 to 20 (psi) (870 to 2,900) **PVC** N/mm² 4 to 20 (580 to 2,900) (psi) Phenolic 5 to 15 N/mm² (730 to 2,200) (psi) Polycarbonate N/mm² 5 to 20 (psi) (730 to 2,900) 5 to 15 Nitrile N/mm² (isq) (730 to 2,200) Neoprene N/mm² 5 to 15

Tensile Strength, ISO 6922:

Steel (grit blasted) N/mm² 12 to 25

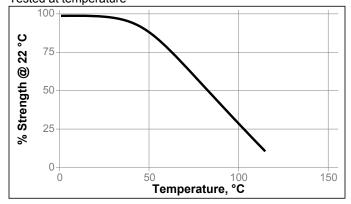
(psi) (1,700 to 3,600) Buna-N N/mm² 5 to 15 (psi) (730 to 2,200)

(psi)

(730 to 2,200)

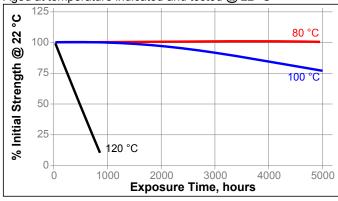
Cured for 24 hours @ 22 °C, followed by 48 hours @ 120 °C, tested @ 22 °C

Lap Shear Strength, ISO 4587:


Steel (grit blasted) N/mm² ≥18.0^{LMS} (psi) (≥2,610)

TYPICAL ENVIRONMENTAL RESISTANCE

Cured for 1 week @ 22 °C Lap Shear Strength, ISO 4587: Steel (grit blasted)


Hot Strength

Tested at temperature

Heat Aging

Aged at temperature indicated and tested @ 22 °C

Chemical/Solvent Resistance

Aged under conditions indicated and tested @ 22 °C.

		% of initial strength		
Environment	°C	100 h	500 h	1000 h
Motor oil	40	85	85	85
Gasoline	22	90	70	70
Ethanol	22	95	95	80
Isopropanol	22	75	75	75
Freon TA	22	90	90	85
Heat/humidity 95% RH	40	80	80	65

Lap Shear Strength, ISO 4587: Polycarbonate

		% of initial strength		
Environment	°C	100 h	500 h	1000 h
Heat/humidity 95% RH	40	100	100	100

GENERAL INFORMATION

This product is not recommended for use in pure oxygen and/or oxygen rich systems and should not be selected as a sealant for chlorine or other strong oxidizing materials.

For safe handling information on this product, consult the Safety Data Sheet (SDS).

Directions for use:

- For best performance bond surfaces should be clean and free from grease.
- 2. This product performs best in thin bond gaps (0.05 mm).
- 3. Excess adhesive can be dissolved with Loctite cleanup solvents, nitromethane or acetone.

Loctite Material Specification^{LMS}

LMS dated December 5, 2003. Test reports for each batch are available for the indicated properties. LMS test reports include selected QC test parameters considered appropriate to specifications for customer use. Additionally, comprehensive controls are in place to assure product quality and consistency. Special customer specification requirements may be coordinated through Henkel Quality.

Storage

Store product in the unopened container in a dry location. Storage information may be indicated on the product container labeling.

Optimal Storage: 2 °C to 8 °C. Storage below 2 °C or greater than 8 °C can adversely affect product properties. Material removed from containers may be contaminated during use. Do not return product to the original container. Henkel Corporation cannot assume responsibility for product which has been contaminated or stored under conditions other than those previously indicated. If additional information is required, please contact your local Technical Service Center or Customer Service Representative.

Conversions

 $(^{\circ}C \times 1.8) + 32 = ^{\circ}F$ $kV/mm \times 25.4 = V/mil$ mm / 25.4 = inches $\mu m / 25.4 = mil$ $N \times 0.225 = lb$ $N/mm \times 5.71 = lb/in$ $N/mm^2 \times 145 = psi$ $MPa \times 145 = psi$ $N \cdot m \times 8.851 = lb \cdot in$ $N \cdot m \times 0.738 = lb \cdot ft$ $N \cdot mm \times 0.142 = oz \cdot in$ $m \cdot m \times 0.142 = oz \cdot in$

Note:

The information provided in this Technical Data Sheet (TDS) including the recommendations for use and application of the product are based on our knowledge and experience of the product as at the date of this TDS. The product can have a variety of different applications as well as differing application and working conditions in your environment that are beyond our control. Henkel is, therefore, not liable for the suitability of our product for the production processes and conditions in respect of which you use them, as well as the intended applications and results. We strongly recommend that you carry out your own prior trials to confirm such suitability of our product.

Any liability in respect of the information in the Technical Data Sheet or any other written or oral recommendation(s) regarding the concerned product is excluded, except if otherwise explicitly agreed and except in relation to death or personal injury caused by our negligence and any liability under any applicable mandatory product liability law.

In case products are delivered by Henkel Belgium NV, Henkel Electronic Materials NV, Henkel Nederland BV, Henkel Technologies France SAS and Henkel France SA please additionally note the following:

In case Henkel would be nevertheless held liable, on whatever legal ground, Henkel's liability will in no event exceed the amount of the concerned delivery.

The information provided in this Technical Data Sheet (TDS) including the recommendations for use and application of the product are based on our knowledge and experience of the product as at the date of this TDS. Henkel is, therefore, not liable for the suitability of our product for the production processes and conditions in respect of which you use them, as well as the intended applications and results. We strongly recommend that you carry out your own prior trials to confirm such suitability of our product.

Any liability in respect of the information in the Technical Data Sheet or any other written or oral recommendation(s) regarding the concerned product is excluded, except if otherwise explicitly agreed and except in relation to death or personal injury caused by our negligence and any liability under any applicable mandatory product liability law.

In case products are delivered by Henkel Corporation, Resin Technology Group, Inc., or Henkel Canada Corporation, the following disclaimer is applicable:

The data contained herein are furnished for information only and are believed to be reliable. We cannot assume responsibility for the results obtained by others over whose methods we have no control. It is the user's responsibility to determine suitability for the user's purpose of any production methods mentioned herein and to adopt such precautions as may be advisable for the protection of property and of persons against any hazards that may be involved in the handling and use thereof. In light of the foregoing, Henkel Corporation specifically disclaims all warranties expressed or implied, including warranties of merchantability or fitness for a particular purpose, arising from sale or use

of Henkel Corporation's products. Henkel Corporation specifically disclaims any liability for consequential or incidental damages of any kind, including lost profits. The discussion herein of various processes or compositions is not to be interpreted as representation that they are free from domination of patents owned by others or as a license under any Henkel Corporation patents that may cover such processes or compositions. We recommend that each prospective user test his proposed application before repetitive use, using this data as a guide. This product may be covered by one or more United States or foreign patents or patent applications.

Trademark usage: [Except as otherwise noted] All trademarks in this document are trademarks and/or registered trademarks of Henkel and its affiliates in the U.S. and elsewhere.

Reference 1.7